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Jackknifing Disattenuated Correlationa*

W. Todd Rogers

National Assessment of Educational Progress

Despite authoritative surport for the use of disattenuated

correlations in certain experimental situations, their actual

use in these situations has been limited. This may partially

be explained by the restricted availability of inferential

procedures due to the lack of adequate distribution theory for

the disattenuated correlation coefficient. The jackknife (Tukey,

1958) is a general inferential technique intended to ameliorate

the problems associated with inadequate sampling theory. The

research reported herein is directed at investigating the utility

of the jackknife for establishing confidence intervals on and

testing hypotheses about the disattenuated correlation coefficient

for small samples.

Disattenuated Corrolation Coefficients

Classical test theory (Gulliksen, 1950; Lord and Novick,

1968) is based upon the assumption that an observed score for an

examinee can be regarded as the sum of two unobservable components:

a true T and an error of measurement E. It is assumed that the

error score for one measurement is independent of that for another.

* This paper is based upon part of the author's doctoral disser-
tation (Rogers, 1971) completed at the University of Colorado.
The author is greatly indebted to Dr. Gene V Glass, who, as
thesis advisor, generously contributed his time, guidance and
encouragement.
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Consequently, if it can be assumed that the relationship between

two sets of measurements is linear, the Pearson-product moment

correlation between two sets of observed scores will be lower

than what it would have been had the measurements been error

free. Spearman (1904a) called this lowering of a correlation

coefficient due to the fallibility of measurement attenuation

and provided the basic procedure for estimating what the value

of a correlation coefficient would be if the errors of measure-

ment were eliminated. The basic formula is:

p(Tx,Ty)
O(x,Y)

h(p(x,x) ya ))
(1)

where k(X,Y) is the population correlation between observed scores

on test X and test Y, 2.(X,X') and 2.(Y,Y1) are the population values

of the reliabilities of test X and test Y, and o(Tx,Ty) is the

correlation between true scores for test X and test Y. Lord (1957)

called the corrected correlation the disattenuated correlation.

Sample estimates, r(yTy), of 2.(TE,Ty) are obtained by

substituting in formula (1) s-a-mple estimates for p(Xa), p(X,X'),

and p(Y,Y.') which incorporate a consistent definition of error,

i.e., the reliability estimates treat as error those factors

which attenuate the correlation between X and Y. The testing

paradigm simulated in the present study involves administering

both test X and test Y on one test occasion followed by a second

administration after a suitable time has elapsed:

3
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Xl X2

Y1 Y2

An estimate of .2.(Ty) consistent with this design is:

r(X1,Y2) r(X2,Y1)

r(Tx/Ty) 711111777n177) (2)

Several other formulas for obtaining estimates of p(Tx,Ty)

consistent with this design have been presented in the literature

(Spearman, 1904a, 1907; Yule (see Appendix C in Spearman, 1910);

Lord, 1957). Formula (2) differs from Yule's formula in that

the arithmetic mean of the correlations between test X and test

Y is used instead of their geometric mean. If it can be assumed

that the series of measurements have been conducted with equal

accuracy, then the differences in value between r(X.14.2) and

r(X ,Y ) can be attributed to chance and can, therefore, be_2 .1

taken care of by taking an average. In contrast to the formulas

of Spearman and Lord, the same administration correlations between

test X and test Y (r(X ) and r(X,Y)) are ignored since the- 2

factor of contemporaneity, which can enhance these correlations,

is not present in the estimates of reliability.

Both the correlations between repeated measures (test-retest

reliabilities) and the correlations between distinct measures

include as error variance fluctuations from one test occasion to

the next. In contrast, internal analyses and parallel forms

estimates of reliability generally result in an inconsistent

4
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definition of error since specificity, which is treated as error

in these reliability estimates, does not lower the correlation

between X and Y (Johnson, 1950).

Despite the availability of sample estimators and author-

itative support for the use of disattenuated correlations in

certain situations (e.g., Thouless, 1939; Gulliksen, 1950; Block,

1963; Lord, 1957, 1970; Lord and Novick, 1968; Cochran, 1970),

their actual use has been limited. This may partially be explained

by the restricted availability of inferential procedures due to the

lack of an adequate distribution theory for the disattenuated

correlation coefficient. In contrast to the uncorrected coeffi-

cient, the theoretical distribution of r(Tx,Ty) has not yet been

derived; in view of the complexity of the sample estimator, a

theoretical derivation of its sampling distribution probably leads

to intractable mathemation, making an exact analytical solution

exceedingly difficult, i2 not impossible. Formulas for obtaining

approximate values of the standard error corresponding to the

various sample estimators of R(Tx,Ty) have been derived by Kelley
11111110 111010

(1923, 1947), Shen (1924), and Cureton and Dunlap (1930). The

formula for the standard error of r(14,Ty) computed from formula

(2) is:

r(Tx,Ty) (1 - r2(X X ))2 (1 - r2(Y1,Y2))2
S.E.(r(T IT )) =

1'
2

we

X Y {2(N - 1)}½ 2r2(X1,X2) 2r2(11,12)

1 r
2 (C) + r 2 (A) + r(X

1
IX

2 1
)r(Y.

,
Y
2

)

r2 (C)



where

5

(r2(A) + r2(C))(1 + r(X1,X2)r(YvY )

r(X1,X2)r(It1a2)

.
2r(A)r(C)(r(X ,X2) + r(Y1,Y2)) 2r(A) .

r(X1,X2)r(Y1,Y2)
r(C)

[I

1 . r20c1 x2) . r2(c) 1 . r2(y1a2) . r2(c)

r(X11X2) r(Y1,Y2)

2r2(A) - 4r2(C) - r2(X11X2) r2(Y1,Y2)

2

11

+ 2 - 2r2
(A1/2)

(C) = r(X11Y2) r(X21Y1)

2

r(X11Y ) + r(X21Y2)

2

(3)

aad N equals the number of subjects.

Formula (3) illustrates the complexity of the standard

error formulas for r(,Ty). The method of logarithmic differen-

tials used in the derivations of these formulas is a large sample

procedure (Kelley, 1947, p. 523). The absence of a theoretical

sampling distribution for the disattenuated correlation coefficient

and the questionable validity of the standard error formulas for

small to moderately sized samples limits the general applicability

of these formulas.



Although a derivation of the theoretical sampling distribution

of r(T) has not been obtained, procedures for making tests of

hypotheses and constructing confidence intervals in special situa-

tions have been developed. Lord (1957) and McNemar (1958) developed

two different procedures for testing the hypothesis that

1.0, Lord's procedure, developed using maximum likelihood procedures,

is a large sample test. McNemar's test is based upon analysis of

variance. His method, although appropriate for any sample size,

assumra that the two tests are equally reliable in the population.

Neither of these tests has been generalized to other hypotheses

about p(Tx14).

DuBas-e(1965) suggested that the disattenuated correlation

coefficient was equal to the uncorrected correlation between X and

Y with the error components partialled out, i.e.,

r(Tx,Ty) = r(X,Y ExlEy) .

Thif method of computing corrected coefficients and describing its

distributions in terms of distributions of partial correlations

does not seem to be of practical value. In the matrix of correla-

tions DuBois used to determine r(ZEITy), he assumed that r(EvEy),

r(Ex,Y ), and r(Ey,X) are equal to zero. Although it is assumed

in classical test theory that the corresponding population values

are zero, there is no reason to expect these sample values to be

zero for a particular sample.

The most recent studies of inferential procedures for testing

hypotheses about 2.(Tx/Ty) and establishing confidence limits for

are the Monte Carlo studies performed by Forsyth (1967)/



and Forsyth and Feldt (1969, 1970). Based on their finding that

"for suitably large samples, the sampling distribution of r(lx,Ty)

is approximately normal in form" (Forsyth and Feldt, 1969, p".. 63),

Forsyth and Feldt investigated using standard inferential procedures

based on normal curve theory. The standard errors were calculated
a

using formulas derived by the method of logarithmic differentials.

The data obtained indicated close agreement between the actual

proportion of confidence intervals enclosingu(Tx,Ty) and the

nominal level for values of a equal to .10 and .05. However, the

sizes of the critical regions corresponding to a two-tail hypoth-

esis test were consistently uneven. To overcome the uneven

distribution of Type I errors, Forsyth and Feldt used the hypothesized

value of p(4,Ty) which, in their computer simulation, was actually

equal to the parameter value used in generating the sampling

distributions. In practice the value of p(Tx,Ty) is not known.
ONO MEM

To the extent the hypothesized value differs from the actual value

of p(14,Ty), the Type I errors will be unevenly distributed to an

unknown degree. This fact severely restricts the use of normal

curve procedures for directional hypothesis testing.

Present inferential procedures are restricted to special

situations. The procedures for hypothesis testing developed by

Lord and McNemar have not been generalized to other hypotheses

about p(1){,Ty). The normal curve procedure proposed by Forsyth

and Forsyth and Feldt appears to be restricted to large samples.

Further, the method of logarithmic differentials used to derive

the formula for the standard error of r(lx,Ty) is a large sample
1
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procedure. The jackknife is an inferential procedure intended

to obtain approximate confidence intervals simply in problems

where standard statistical procedures may not exist or are

difficult to apply.

The Jackknife

Statistical inference is the process of generalizing from

known characteristics of a sample to tha corresponding but unknown

characteristics of the population from which the sample was drawn.

Given a sample of observations, the inferential procedure involves

(a) obtaining a function of these nbservations which should

provide an estimate of the parameter of interest, (b) obtaining

a measure of the precision of the estimate, and (c) combining

the obtained estimate and the measure of precision with knowledge

of the sampling distribution of the estimator to make probabilis-

tic statements about the value of the parameter. There exist

situations in which it is possible to determine an estimate of a

parameter but yet for which it is difficult, if not impossible,

to derive a measure of precision or for which the sampling dis-

tribution of the estimator is either not known or else very complex.

In these situations one cannot often simply use known standard

procedures to obtain an idea of the accuracy of the estimate. The

jackknife (Tukey, 1958) is a procedure which may be used in

situations of this type to obtain approximate confidence intervals

simply in terms of the estimator of the parameter. Tukey adopted

the name jackknife since, like a boy scoutl's jackknife, the

procedure is intended to be generally applicable but, like the



scout's jackknife, many of its jobs could be better done by a

specialized tool, particularly if that tool were available.

The jackknife depends upon dividing a set of data into

groups, obtaining estimates from combinations of these groups,

and averaging these estimates. Let 0 be the unknown parameter,

and let (X1,X2, ...411) be a sample of N independent, identically

distributed observations with continuous density function Ee,
MIME

which depends upon 6. Suppose a method for estimating 8 is

available. The jackknife requires that the N observations be

divided into k (k > 1) groups of size n (n a 1) such that pi = nk,

i.e., (Xl...,X.B.;Xn 11..K2n; .; X (k 1)n + 11 Let

g denote the estimate of e based on all N observations and let

6 i = 1, e",k, denote the estimate of 6 based on the (N - n)

ob;ervations in the subsample obtained by omitting the ith group.

New estimates of e, called pseudo-values, are formed by taking

a 1iaar coination of (3n mb and the 6 Is:

MOO

A A

8 = kO - (k 1) . , = 1, se.,k.*i -1

The jackknife estimate of e is the mean of the pseudo-values:

k
A E

6 * = i = 1".

The jackknife estimate, was first introduced by Quenouille
1

(1949, 1956) as a method for reducing bias of the form in para-

metric estimation. Tukay proposed that in most situations the k

10
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pseudo-values, (41, ,, gek, could be treated as k approximately

independent, identically diaributed observations from which an

approximate t - statistic confidence interval for 0 could be

constructed. An estimate of the standard error of the jackknife

estimate is given by:

k A
" 2

E (0*, - 0* )
= 1

1/2

Tukey's proposal implies that the quantity

(4)

(5)

the jackknlfe statistic (Collins, 1970, P. 53), is approximately

distrthuted as a Student - t variate with k 1 degrees of freedom.

The key idea is that, in a wide variety of problems, the
pseudo-values can be used to set approximate confidence
limits, using Student's fL as if they were the results
of applying some complex calculation to each of k
independent pieces of data. The words "as if" are
vital here; Student's t performs well in many circum-
stances where the e*i aeviate substantially from indepen-
dence. (Mosteller-and Tukey, 1968, p. 135).

A comment is required on the degrees of freedom. The correct

number of degrees of freedom for the variance of the jackknife

estimate may be less than k - 1. For example, jackknifing the

median of a sample of size N = 2m, m a whole number, by deleting

one observation at a time results in only one degree of freedom

and nut 2m - 1. If any one observation is deleted in the upper

half of the 2m observations ranked according to size, the median

11
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of the remaining 2m - 1 observations will be the mth observation

(counting up from the lowest). For any observation deleted from

the lower half of the distribution, the median will be the (m 4. 1)st

value in the ranked distribution of observations. This implies

only one degree of freedom for 82 (Mosteller and Tukey point out
71*,

that by jackknifing in groups in which n > l, more than two dif-

ferent pseudo-values will occur.) Mosteller and Tukey (1968,

p. 136) recommended the following general rules of thumb for

determining the proper degrees of freedom for the jackknife

estimate:

c) Count the number of different number. appearing as
pseudo-values, subtract one, and use the results
as degrees of freedom.

cl) If slight changes in the basic observations--as
when values by their nature either 0 or 1 are made
-0.001, + .002, 0.997, or 1.004--would make two
pseudo-values different, they should not be
considered "the same" in applying rule (c). .

L.2) If carrying more decimals in the computation would
have made two pseudo-values different, they should
not be considered "the same" in applying rule (c).

Jackknifing Functions of Statistics

Functions of statistics can be divided into two categories:

linear and non-linear. For linear functions, the order of operation

for obtaining the jackknife estimate does not matter. The jackknife

estimate of a linear combination of statistics is equal to the

linear combination of the jackknife estimate of each of the

statistics that enter into the linear combination, i.e., if

0' = ale]. + a262 + + amem + b,

then 13 = al61*. + ,a242* + + amem*. + b.

12
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For non-linear functions, the order of operations does matter.

If f(ile i2, is a non-linear function of the statistics

then.1, 2#

0;. 0 2* 41041#6
m*

For example, ennsider the logarithmic function

A

OA = log (4).

= k log (;) (k 1) log (6 }*i

k
E e'

'6; = =
*i

E (k log - (k - 1) log ee
= = 1 -a.

Ic

E log {0 }

= k log {a} (k - 1) i = 1

%moor

=log 0^k

n 01 - 1)/k

13

OMNI*

11
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Therefore,

13

E 6*4
n

log 01*d = log

m log

# log

[I

0(5 1)/k

se

ke. (X -6_1) E
A

A
0%. # log alt.}.

The above inequality suggests two alternatives for jack-

knifing non-linear functions. First, jackknife the entire

function:

IMO E
k =

[Ikf(61, ev
1

(k -l)f(01.i,
A

e
2

...,6
m

)

Second, form the function of the pseudo-values of each term in

the combination:

A A

Er. = f(01 t 02 1 eit.)*i 1
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The mean of these pseudo-values yields the jackknife estimates

E 0*i
6. 121 1 1

The standard error of the jackknife estimate for both methods

is calculated using formula (4).

Miller (1964) gave the conditions under which the jack-

knlfe estimate of a function of the

sample mean is asymptotically, normally distributed with the

correct mean and variance. Arvensen (1969) extended Miller's

work to functions of U - statistics and Brillinger proved

that the jackknife was asymptotically correct when jackknifing

maximum likelihood functions. Examples of the successful

application of the jackknife procedure include ratio estimation

(Mosteller and Tukey, 1968), variances computed from one dimen-

sional arrays (Miller, 1968) and two dimensional arrays (Collins,

1970) and analysis of sample surveys (Brillinger, 1964; Arvensen,

1969; Frankel, 1971; Naticnal Assessment of Elucational Progress,

1970). However the jackknife is not foolproof. Difficulties were

illustrated when the sampling distribution of the statistic to be

jackknifed was asymmetrical or had a straggling tail (Miller,1964).

Collins (1970) found that the jackknife performed poorly on the

generalizability coefficient (a function of variance components).

Mosteller and Tukey (1968) warned of problems when the possible

values of the parameter to be estimated are restricted to an



15

interval or half-line. They (Hosteller and Tuky, 1968, pp.

137-138) summarized their discussion on jackknifing statistics

as follows:

There may be some advantage in jackknifing one expression
of a given result rather than another (as when we jack-
knife log y or y4 instead of y).
111

We know little about which choices of expression tend to
polish up the behavior of the jackknife. What evidence
we have suggests that:

bl) It is very desirable to avoid situations where the
sampling distribution ofErirquantity jackknife
has an abrupt terminus or where the possible values
of its estimand are restricted to an interval or
half-line.

b2) It is desirable to avoid sampling distributions
with one or more straggling tails.

b3) It is probably desirable to avoid markedly unsym-
metrical sampling distributions.

In summary, we can use the jackknifing of several numerical
results to tell us about any combination of these results.
Our conclusions will usually differ somewhat from those
reached by jackknifing that combination directly. This
ofiers us choices that sometimes can allow us to improve
our conclusions.

The disattenuated correlation coefficient is a non-

linear function of the four other correlation coefficients:

r(Tx,Ty) =
2{r(X11X2)r(Y11Y2)} I

The possible values of P(TE,Ty) are restricted to the closed

interval [-1,1j. Based on the findings of Forsyth and Feldt

(1969), the sample disattenuated correlation coefficient for

small samples is non-normally distributed. As stated previously,

present inferential procedures are limited to special situations.

r(X11Y2) + r(X21Y1)
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The successful application of the jackknife in this situation

would permit the use of inferential methods where none are

presently available.

Method

several computer simulations were performed to investigate

the utility of the jackknife for establishing confidence intervals

on and testing hypotheses about the disattenuated correlation

coefficient for small samples. Forty-five combinations of

2.(Tx,Ty) (1.00, .90, .80, .50, and .00), 1(XIX') andjICY,1")

(.90, .80; .80, .80; .90, .50), and N (15, 30, 60) were included.

A weighting of the factors of economy and accuracy resulted in

a decision to include 1000 points in each sampling distribution

of the jackknife statistic. All runs were made on a Control

Data Corporation (CDC) 6400 System provided by the University of

Colorado Graduate School Computin g Center.

The theory of the jackknife implies that the jackknife

statistic is approximately distributed as a Student - t variate

with the appropriate degrees of freedom. For most practical

problems, the most crucial area of fit is in the tails of the

distributions. Therefore, to test the validity of the jackknife,

the theoretical and actual cumulative proportions of jackknife

statistics which were at or below the .005, .010, .025, .050,

.100, .900, .950, .975, .990, .995 percentile points in the

Student - t distribution with the k - 1 degrees of freedom were

compared. For each run, k = N.
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Five initial simulation runs, corresponding to the five

values of P(41,Ty), p(X,X') .90, .50, and N a 15,

were performed for r(key) and for each of six power functions,

two logarithmic functions, and one trignometric function (see

Table 2, page 22). Forty-five simulations, corresponding to all

the combinations of the input parameters, were performed for

r(Tx,Ty) and for the transformation of r(TA,Ty) which yielded

the best solution for the five initial simulations. The empirical

sampling distribution of r(IrTy) was generated for each of the

45 combinations of input parameters to obtain a description of

the statistic jackknifed.

Results

Characteristics of the Sampling

Distribution of r(T T )

The mean, variance, skewness, and kurtosis

for each of the 45 sampling distributions of

r(Tx,Ty) are presented in Table 1. The skewness measure equalled

the third moment about the mean divided by the cube of the

standard deviation of the sampling distribution of r(45.,T1).

The kurtosis equalled the fourth moment about the mean divided

by the fourth power of the standard deviation of the sampling

distribution of r(TAITy).

The means of the sampling distributions of r(Iii,Ty)

tended to be lower than the parameter values except for the case

in which the reliabilities were most different (viz., p(XIX') =
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. 90, p(Y,Y') .50). In this latter case, there was a general

tendency for the mean of the sampling distribution to overestimate

p(TE,Ty). The bias in r(Tx,Ty) decreased as the sample size

increased. For example, with N = 15, the bias was approximately

. 058, while for N = 60, the bias was less than .009.

The variance of the sampling distributions of r(Ix,Ty)

decreased as the value of 2(4,T1) increased for fixed values

of the reliabilities and as the value of N increased. The

variances ranged between .0025 and .1402 for N = 15, between

. 0006 and .0623 for N = 30, and between .0003 and .0282 for

N = 60. Within each combination of p(T ,T ) and NI the largestX Y
variance was obtained with p(XIX') = .90 and p(Y,Y') = .50.

The skewness and kurtosis of the sampling distribution of

r(74,Ty) decreased as the value of N increased. For each

combination of N and pair 'or reliabilities, the r(4,T1) dis-

trib.Ations were positively skewed with p(14,T1) = 1.00, but with

p(TxpTy) = .00, the distributions were negatively skewed. With

2.(ilx,Ty) between zero and one, the distributions were negatively

skewed for p(XIX') = .90, p(Y,Y') = .80 and for p(XIX') = .80,

p(YFY') = .80. For p(X,X') = .90, p(Y,Y') = .50, the distribu-

tions tended to be positively skewed as the value of 2.(Tx,Ty)

increased and as the value of N decreased.

With E(Tx,Ty) greater than zero, the sampling distributions

were leptokurtic for each combination of N and pair of reliabilities.

In general the kurtosis increased as the value of 41(2,Ty) increased.

com:)inaioa of :4 an ealTy), thc kurotsis was, in
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general, greatest with 2.(XIX') = .90, p(Y,Y') la .50.

Findings Related to the Jackknife.

The five initial simulations performed for each of the

statistics jackknifed revealed that the performance of the

jackknife was not consistent across the five values of elx,Ty).

For example, there was closer agreement between the theoretical

and actual cumulative proportions of jackknife statistics

produced by the jackknife on r(14_,Ty) for JI(Tx,Ty) = .00 (mean

absolute difference equalled .0147) than for .2.(14s.,T1) = 1.00

(mean absolute difference equalled .0249). Furthermore, the

performance of the jackknife on the transformations investigated

was not consistent. With ,e14,Ty) = .90 the jackknife on

r9/5(TE,Ty) yielded superior results to the jackknife on r7/5(.14,Ty),

but with g(Ty) = .50, the superiority was reversed.

The overall mean absolute difference across all five simula-

tions performed for each of the 11 statistics jackknifed is

reported in Table 2. Jackknifing r(Tx,Ty) by parts and jackknifing

power functions of r(,Ty) in which the exponents were less than

one or greater than two resulted in noticeably inferior solutions

in comparison to the solution on r(TE,Ty). The jackknife results

obtained for the remaining transformations were reasonably com-

parable. The mean of the absolute differences between the

theoretical and actual cumulative proportions of jackknife

statistics at the 10 points of comparison across all five simu:

lations ranged between .0160 and .0219, with the best solution

obtained from the jackknife on r7/5(II,Ty).

Simulations for each of the 45 combinations of
IMMO

_e(Y,Y'), and N were performed for the jackknife on

22
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TABLE 2

OVERALL !LAN ABSOLUTE DIFFERENCES OBTAINED

FR. X FIVE INITIAL SINULATIONS

Statistic Overall Mean Absolute Difference

r(T,,T)

r
,

(Tx,ly)

9/t;
-(Tx,Ty)

/3(T T )
X' Y

r33(Tx,Ty)

/8(T ,T )
1,_ X Y
1*(Tx,Ty)

loglo(r(Tx,Ty) cl}
b

IC b

1/21n
c
2

- r(T
X'

T )

2 sin
r(T

X'
T ) b

RMAX
r(Tx,Ty) by parts

0.0188

.0160

.0207

.0295

.0380

.0620

.0826

.0219

.0196

.0179

0.2364

aThe overall mean absolute difference equals the mean of the

absolute differences at the .005, .010, .025, .050, .100, .900,

.950, .975, .990, and .995 percentile points of the t-distribu-

tion with 14 degrees of freedom summed across the five initial

simulations.

bcl = .00001 plus the absolute value of the minimum
of r(Tx,Ty) and the jackknife estimate of p(Tx,Ty)
foreach gimulation performed.
c2 = .00001 + RMAX.
RMAX = maximum of r(lx,Ty) and the jackknife estimate

of p(TafTy) for eaa tImUlation performed.

23
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r
7/5 (Tx,Ty) and r(,Ty). The jackknife on r(4,T1) was inves-

tigated further to see whether for other values of the input

parameters the jackknife results would converge to the results

obtained from jackknifing r715 (TatTy). The results of these

simulations are reported in Tables 3-17. Each table consists

of a comparison between the theoretical and empirical cumulative

proportions of jackknife statistics at 10 points of the t-

distribution with the correct degrees of freedom. To facilitate

the comparison between the two solutions, the corresponding

results for r(IxoTu) and r7/5(Ix,T1) are presented in each table.

In each table, column one contains the theoretical cumulative

proportion E at each of the 10 points. Column two indicates the

proportion of jackknife statistics E which were at or below each

percentile point for r(Tx,Ty). Column three contains the dif-
MIND .111.

ference in cumulative proportion (theoretical minus actual) at

each of the 10 points. Columns four and five contain the cor-

responding information as in columns two and three for r7/5(Tx,Ty).
WON IMPM

For example, from Table 17, the actual proportion of jackknife

statistics at or below the 2.5th percentile point with N = 60 is

.033 for r(74,T1). In this caselthe actual proportion exceeds

the theoretical proportion by .008. For r715(74,Ty), the actual

proportion of jackknife statistics at or below the 2.5th percentile

point with N = 60 is .007. For this case, the theoretical

proportion exceeds the actual proportion by .018. The means of

the absolute differences between the theoretical and actual

cumulative proportions at the .005, .010, .025, .050, .100, .900,

;*:,4
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TABLE 3

COMPARISON OF ACTUAL (171) ANU THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POLTS or TLE t-DLSTRIBUTION

INPUT PARAMETUS: 13(Tx.Ty) es 1.00

p(XX) is .9f!

.80

womaaamparrwrimisbalftormaa

. p
r(Tx,Ty)

P 1;

r(Tx,Ty)
7 i

r /5(T
1C,
T
Y

)

N 15, d.f. is 14

0.005 0.003 0.002 0.003 0.002

.010 .004 .006 .004 .006

.025 .010 .015 .011 .014

.050 .021 .029 .022 .028

.100 .056 .044 .059 .041

.900 .968 - .068 .968 .06)

.950 .990 - .040 .991 - 441

.975 .994 - .019 .995 .020

.990 .998 - .008 .998 - .008
0.995 0.999 -0.004 0.999 -0.004

N = 30, d.f. = 29

0.005 0.000 0.008 0.CDO 0.005

.010 .001 .009 ,.001 .009

.025 . .016 .009 .016 .009

.050 .030 .020 .032 .018

.100 .086 .014 .087 .013

.900 .951 - .051 .953 - .053

.950 .985 - .035 .987 - .024

.975 .999 - .024 .999 - .024

990 1.000 - .010 1.000 - .010

0.995 1.000 -0.005 1.000 -0.005

N = 60, d.f. = 59

0.005 0.000 0.003 0.000 0.005

.010 .001 .009 .002 .008

.0n .014 .011 .GI4 .011

.0:10 .035 .015 .036 .014

.10U .093 .007 .095 .005

.900 .921 - 021 123 - .023

.950 .970 - .020 .971 - .021

.96 .991 - .016 991 - .016

.990 .997 - .007 .997 - .007

0.995 0.993 -0.003 0.998 -0.003

25
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TABLE *4

Coravousov OP ACTUAL (11) AND THEORETICAL (p) CUMULAT'VE
PROPORTIONS AT 10 POINTS OF THE t-DZSTR/BUTION

INPUT PARAMETERS: p(Tx,TvY 1.00

0(X,X") .80
petor, .80

N la 15, d.f. * 14

0.005 0.002 0.003 0.002 0.003
.010 .002 .008 .002 .008
.025 .007 .018 .009 .016
.050 .018 .032 .020 . .030
.100 .050 .050 .051 .049
.900 .968 - .068 .970 - .070
.950 .993 - .043 ..993 - .043
.975 .997 - .022 v497 - .022
.990 .999 - .009 .999 - .009

0.995 0.999 -0.004 0.999 -0.004

N = 30, d.r. = 29

0.005 0.001 0.004 0.001 0.0u,
.010 .002 .008 .002 .008
.025 .008 .017 .010 .015
.050 .022 .028 .022 .028
.100 .074 .026 .079 .021
.900 .946 - .046 .949 - .049
.950 .988 - .038 .988 - .038
.975 .999 - .024 1.000 - .025
.990 1.000 - .010 1.000 - .010

0.995 1.000 -0.005 1.000 -0.005

N = 60, d.f. = 59

0.005 0.000 0.005 0.000 0.005
.010 .002 .008 .002 .008
.025 .017 .008 .018 .007
.05U .039 .011 .039 .011
.100 .089 .011 .092 .008
.900 .923 - .023 .927 - .027
.950 .977 - .027 .978 - .028
.975 .993 - .01 8 .993 - .018
.990 .999 - .009 .999 - .009

0.995 1.000 -0.005 1.000 -0.005
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TABLE 5

COMPARISON OF ACTUAL (p) AND T1 WRETICAL (p) CUMULATIVE

PROPORTIONS AT 10 POINTS 0 THE t-DISTRIBUTION

INPUT PARAMETERS: o(T T
Y

0 1.00
X'

p(X,X1 = .90

0(Yal m .50

r(Txay) r(Txay)
7/ 1;

5 (T
X'

T
Y
)

N 15, d.f. so 14

0.005
.010
.025

.050

.100

.900

.950

.975

.990

0.995

N 30, d.f. = 29

0.005
.010
.025

.050

.100

.900

.950

. 975

.990
0.995

N 60, d.f. m 59

0.005
. 010
.025

.050

. 100

.900

.950

. 975

. 99U
0.05

0.000 0.005
.001 .004

.013 .012

.035 .015

.078 .022

.996 - .096

1.000 - .050

1.000 - .025

1.000 - .010

1.000 -0.005

0.000 0.005

.004 .006

.011 .014

.040 .010

.094 .006

.994 - .094

.999 - .049

1.000 - .025

1.000 - .010

1.000 -0.005

0.003 0.002

.0u° .004

U2X. - .003

. 060 - .010

. 117 - .017

. 982 - .082

.999 - .049

1.000 - .025

1.000 - .010

1.000 -0.005

re.7

0.001
.002

.020

.045

.092

.996

1.000
1.000
1.000
1.000

0.000
.004

.017

.049

.106

.995

1.000
1.000
1.000
1.000

0.004
.013

.031

. 062

.122

.984
. 999

1.000
1.000
1.000

0.004
.008
.005

.005

.008
- .096
- .050
- .025
- .010
-0.005

0.005
.006
.008

.001

- .006

- .095
- .050
- .025
- .010

-0.005

0.001
- .003

- .006

- .012

- .022

- .084

- .049

- .025

- .010

-0.005
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TABLE 6

COMPARISON OF ACTUAL (p) AND THEORETICAL (n) CUMULATIVE

PROPORTIONS AT 10 POINTS OF THE t-DISTZUBUTION

INPUT PARAMETERS: o(T ,T 14m .90
.

X Y
.90

p(Y,Y) lig .80

i3

r(Tx,Ty) r(Txay)

N 15, d.f. or 14

0.005
.010
.025

. 050

.100
. 900
.950

. .975

.990

0.995

N = 30, d.f. 29

0.005
.010

. 025

.050

.100

.900

.950

.975

. 990
0.995

N 60, d.f. m 59

0.0,1
.010

.050
. L00

. 900

. 950

.975

. 990
0.995

0.000 0.005

.001 .009

.005 .020

.011 .039

.030 .070

.807 .093

.877 .073

.913 .062

.943 .047

0.964 0.031

0.001
.001

. 003
. 009

. 035

.815

. 874

.917

.946

0.959

0.000
.000

.011

.022

. 062

.873

. 919

.943

.968

0.91)

0.004
.009

.022

.041

.065

.085

.076

.058

.044
0.036

0.005
.010

.014

. 026

.038

.027

.031

.032

.022
0.020

7/ a

r %i(Tx,Ty)

0.001 0.004

.001 .009

.006 .019

.017 .033

.036 .064

.813 .087

.880 .070

.916 .059

.947 .043

0.966 0.029

0.001 0.004

.Q02 .008

.006 .019

.011 .039

.038 .062

.816 .084

.880 .070

.920 .055

.947 .043

0.961 0.034

0.000 0.005

.002 .008

.013 .012

.025 .023

.066 .034

.874 .026

.922 .028

.945 .030

.969 .021

0.976 0.019
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TAM.E 7

COMPARION OF ACTUAL (P) AND THEORET1.:AL (n) CUMULATIVE

PROPORTIONS AT 10 POINTS OF THE t-DISTRIBUTION

INPUT PARAMETERS: 0(Tx,Tyld w .90

p(X,r) w .80

p(Y,Y*) w .80

r(TxsTy)
P

r(T
X'

T ) r 5(T
X'

T )
71 P

r 15(T T
Y
)

N 15, d.f. w 14

0.005 0.002 0.003 0.003 0.002

.010 .002 .008 .003 .007

.025 .004 .021 .007 .018

.050 .010 .040 .016 .034

.100 .035 .065 .048 .052

.900 .860 .040 .865 .035

.950 .912 .038 .918 .032

.975 .943 .032 .947 .028

.990 .964 .026 .967 .023

0.995 0.972 0.023 0.973 0.022

N = 30, d.f. 29

0.005 0.000 0.005 0.000 0.005

.010 .001 .009 .001 .009

.025 .002 .023 .003 .022

.050 .006 .044 .011 .039

.100 .039 .061 .042 .058

.900 .839 .061 .846 .054

.950 .902 .048 .902 .048

.975 .940 .035 .943 .032

.990 .964 .026 .967 .023

0.995 0.976 0.019 0.979 0.016

N = 60, d.f. = 59

0.005 0.001 0.004 0.001 0.004

.010 .001 .009 .002 .008

O.' 5 .008 .017 .008 .017

.050 .020 .030 .020 .030

.100 .062 .038 .066 .034

.900 .867 .033 .868 .032

.950 .919 .031 .923 .027

.9/5 .949 .026 .949 .026

.99O .967 .023 .069 .023

0.995 0.976 0.019 0.978 0.017
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TABLE

COMPAMON 01 ACTUAL (ii) AND THEORETICAL (p) CUMULATIVE
.
PROPORTUA AT 10 POINTS OF THE t-DISTRIBUTION

INI3T PARAMETLRS: p(Tx,Ty3" m .90

p(X,r) .90

p(Y,Y*) Is .50

P 7/5 ir(Tx,Ty)r(Tx,Ty) r -(Tx,Ty)

N 15, d.f. m 14

0.005
.010

.025

.050

.100

.900

.950

.975

. 990
0.995

N Ito 30, d.f. co 29

0.005
.010

.025

. 050

.100

. 900

.950

. 95

.990

0.995

N 60, d.f. = 59

0.005
. 0Io
. 02.)

.0i0

. 100

.900

. 950

. 97!)

.990
0.99')

0.001
.002

.009

.016

.047

,960
.979
.989

.993
0.996

0.000
.000

.009

.019

.057

.946

.976

.992

.998

0.998

0.001
.002

. 008

. 028
. 068
.917

.965

. 983

. 995
0.998

0.004 0.003 0.002
.007 .007 .003

.016 .014 .011

.034 .023 .027

.053 .067 .033
,060 .961 - .061

- .029 .980 - .030
- .014 .991 - .016
- .003 .993 - .003
-0.001 0.997 -0.002

0.005 0.000 0.005
.010 . .003 .007

.016 .012 .013

.031 .025 .025

.043 .077 .023

- .046 .954 - .054
- .026 .983 - .033

- .017 .992 - .017
- .008 .998 - .008
-0.003 0.999 -0.004

0.004 0.002 0.003
.008 .006 .004
.017 .010 .015

.022 .036 .014

.032 .076 .024

- .017 .923 - .023
- .019 .971 - .021
- .008 .986 1

- .005 .997 - .007
-0.003 0.999 -0.004

111111,..Min
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TABLE 9

COMPARISON or ACTUAL () AND THEORETICAL (r) =mann
PROPORTIONS AT 10 POINTS OF THE t-DISTRIBUTION

INPUT PARAMETERS: 0(T T
1/
Ts 80

0(X,V) us .90
P(Yal ivs .80

P
r(TX'T'1 'r(T TX Y

7/r S(T
X'TY)

71 P
r '5(TX' TY)

N 15, d.f. us 14

0.005
.010
.025
. 050
.100
.900
.950
.975
. 990

0.995

N 30, d.f. as 29

0.005
.010
. 025
.050
.100
.900
.950
.975
. 990

0.995

N 60, d. f. = 59

0.005
.010
.025
. 050
. 100
.900
.950
. 97.)
.990

0.995

0.000 0.005
.002 .008
. 008 .017
.017 .033
.04d .052
.809 .091
.880 .070
. 915 .060
.939 .051

0.951 0.044

0.001 0.004
.001 .009
.005 .020
. 015 .035
.039 .061
.852 .048
.900 .050
.924 .051
.948 .042

0.964 0.031

0.000
. 003
.007
.019
.053
.855
. 914
.951.
. 990

0.995

0.005
.007
.018
.0.31
.047
. 045
. 036
.024
.017

0.017

31.

0.005
.008
.018
.031
. 067
.816
. 883
.919
. 945

0.952

0.001
. 003
.012
. 020
. 049
. 858
. 901
.929
.952

0.969

0.002
.004
.010
.023
.059
. 858
.922
. 952
.975

0.979

0.000
.002
.007
.019
.033
.084
.067
.056
.045

0.043

0.004
.007
.013
.030
.051
. 042
. 049
. 046
. 038

0.026

0.003
. 006
.015
.027
.043.
.042
.028
.023
.015

0.016
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TABLE. 10

COMPARISON nr ACTUAL () AND TH8ORETICAL (p) CUMULAT/VB

NIMMONS AT 10 POINTS or THE t-DISTRIBUTION

INPUT PARAMETERS: p(Tx,TyTa m .80

0(XX) * .80
p(Y,Y1 .80

N 15, d.f. 14

0.005 0.003 0.002 0.001 0.004

.010 .004 .006 .007 .003

.025 .008 .017 .017 .008

.050 .019 .031 .038 . .012

.100 .046 .054 .073 .027

.900 .822 .078 .830 .007

.950 .880 .070 .885 .065

.975 .911 .064 .916 .059

.990 .941 .049 .944 .046

0.995 0.953 0.042 0.956 0.039

N n 30, d.f. m 29

0.005 0.002 0.003 0.004 0.001

.010 .003 .007 .007 .003

.0..5 .007 .018 .009 .016

.00 .015 .035 .020 .030

1u0 .040 .060 .053 .047

.900 .833 .067 .839 .061

.950 .882 .068 .892 .058

.975 .926 .049 .933 .042

.990 .947 .043 .954 .036

0.995 0.965 0.030 0.970 0.025

N m 60, d.f. r. 59

0.005 0.000 0.005 0.000 0.005

.010 .000 .010 .000 .010

.W5 .005 .020 .012 .013

.0j0 .025 .025 .033 .017

.100 .060 .040 .068 .032

.900 .851 .049 .859 .041

.9j0 .915 .035 .920 .030

.975 .944 .031 .948 .027

.990 .962 .028 .965 .028

0.995 0.974 0.021 0.976 0.019

32
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TABLE 11

COMPARISON OF ACTUAL (i) AND TUEORETICA (p) CUMULATIVE

'PROPORTIONS AT 10 POINTS OF THE t-D4STRIBUTION

INPUT PARAMETERS: p(Tx,T0.60 .80

p(X,V) im .90

0(Y,V) .50

r(T
X'
T )

pp
r(T

X'
T
Y
)

ibt
r w(T

X'
T
Y
)

71.

X'

P -
r '°(T TY)

N m 15, d.f. = 14

0.005 0.002 0.003 0.008 -0.003

.010 .003 .007 .012 - .002

.025 .009 .016 .019 .006

.050 .014 .036 .040 .010

.100 .050 .050 .091 .009

.900 .925 - .025 .931 - .031

.950 .957 - .007 .961 - .011

.975 .979 - .004 .982 - .007

.990 .989 .001 .989 .001

0.995 0.989 0.006 0.990 0.005

N m 30, d.f. le 29

0.005 0.000 0.005 0.004 0.001

.010 .003 .007 .006 .004

.025 .007 .018 .012 .013

.050 .013 .037 .027 .023

.100 .052 .048 .066 .034

.900 .899 .001 .910 - .010

.950 .947 .003 .955 - .005

.975 .971 .004 .977 - .002

.990 .984 .006 .986 .004

0.995 0.990 0.005 0.992 0.003

N m 60, d.f. m 59

0.005 0.000 0.005 0.001 0.004

.010 .001 .009 .003 .007

.0'25 .011 .014 .012 .013

.050 .024 .026 .032 .018

.100 .066 .034 .083 .017

.900 .886 .014 .892 .008

.950 .932 .018 .943 .007

.975 .962 .013 .967 .008

.990 .982 .008 .984 .006

0.99') 0.986 0.0094 0.989 0.006

33
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TABLE 12

COMPARISON OF ACTUAL () AND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POINTS OF THE t-DISTR/BUTION

INPUT PARAMETERS: o(Tx1Ty) .50

p(X,V) El .90

p(Y,V) .80

N 15, d.f. a 14

0.005 0.001 0.004 0.009 -0.004

.010 .004 .006 .017 - .007

.025 .011 .014 .045 - .020

.050 .023 .027 .073 - .023

.100 .058 .042 .123 - .023

.900 .818 .082 .838 .062

.950 .874 .076 .888 .062

.975 .908 .067 .923 .052

.990 .939 .051 .957 .033

0.995 0.961 0.034 0.973 0.022

N = 30, d.f. m 29

0.005 0.000 0.005 0.023 -0.018

.010 .003 .007 .032 - .022

.025 .011 .014 .051 - .026

.050 .030 .020 .069 - .019

.100 .069 .031 .108 - .008

.900 .831 .069 .844 .056

.950 .884 .066 .902 .048

.975 .923 .052 .937 .038

.990 .952 .038 .964 .026

0.995 0.965 0.030 0.973 0.022

N = 60, d.f. = 59

0.005 0.004 0.001 0.012 -0.007

.010 .006 .004 .017 - .007

.025 .012 .013 .029 - .004

.0)0 .027 .023 .051 - .001

.100 .076 .024 .110 .010

.900 .873 .027 .883 .017

.950 .920 .030 .932 .018

975 .958 .017 .964 .011

.900 .971 .019 .980 .010

0.995 0.982 0.013 0.985 0.010

34
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TABLE 13

COMPARISON OF ACTUAL (:) AND THEORETICAL (p) CUMULATIVE

PROPORTIONS AT 10 -OINTS OF THE t-DISTRIBUTION

INPUT PARAMEMRS: p(T
x,

T
Y
1' 0 .50

P(XW) .50

.80

P 7 fr(Tx,Ty)r(Tx,Ty) r /5(T T
Y
)

N = 15, d.f. als 14

0.005
.010

.025

.050

. 100

.900

. 950

.975

.990

0.995

N 30, d.f. gm 29

0.005
.010
.025
.030

.100

.900

.950

.975

.990

0.995

N 60, d.f. 59

0.005
.010

.025

.050

.100

. 900

.9')0

.975

.990

0.995

0.006 0.001
.009 .001

.021 .004

.033 .017

.054 .046

.835 .065

.887 .063

. 915 .060

.934 .056

0.949 0.046

0.002 0.00:J

.006 .004

. 017 .008

.029 .021

.069 .031

. 851 .049

.908 .042

.933 .042

.964 .026

0.973 0.022

0.004
.005
.011

.030

. 070

.867

.921

.947

.969

0.976

0.001
.005

.014

.020

.030

.033

.029

.028

.021

0.019

0.012 -0.007
.025 - .015

.047 - .022

.068 - .018

.109 - .009

.858 .042

.896 .054

.928 .047

.945 .045

0.964 0.031

0.031 -0.026

%035 - .028

.047 - .022

.066 - .016

.105 - .005

.871 .029

.920 .030

.953 .022

.972 .018

0.979 0.016

0.012 -0.007

.017 - .007

.028 - .003

.064 - .014

.096 - .004

.880 .020

.928 .022

.961 .014

.974 .016

0.982 0.013
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TAB LE 14

COMPARISON OF ACTUAL (p) \ND THEORET/CAL (p) CUMULATIVE
PROPORTIONS AT 10 POI !TS OF THE t-DISTRIBUTION

INPUT PARAMETEI;: p(T
X'
T
Y

) .50

p(X,r) .90

p(Y,11°) .50

N = 15, d.f. 14

0.005 0.007 -0.002 0.014 -0.009
.010 .010 .000 .019 - .009
.125 .016 .009 .043 - .018
.050 .02g .025 .066 - .016

.100 .052 .048 .117 - .017

.900 .895 .005 .915 - .015

.950 .934 .016 .942 .008

.975 .953 .022 .960 .015

.990 .971 .019 .980 .010

0.995 0.980 0.015 0.981 0.014

N = 30, d.f. = 29

0.005 0.003 0.002 0.023 -0.018
.010 .003 .007 .035 - .025

.025 .012 .013 .056 - .031

.050 .025 .025 .078 - .028

.100 .057 .043 .127 - .027

.900 .891 .009 .908 - .008

.950 .930 .020 .943 .007

.975 .956 .019 .967 .008

.990 .974 .016 .977 .013

0.995 0.978 0.017 0.987 0.008

N = 60, d.f. = 59

0.005 0.003 0.002 0.020 -0.015
.010 .008 .002 .022 - .012
.0-.:5 .021 .004 .038 . - .012
.o50 .032 .018 .055 - .005

.100 .065 .035 .100 .000

.900 .870 .030 .893 .007

.950 .927 .023 .943 .007
975 .957 .018 .963 .012

.990 .973 .017 .978 .012

0.995 0.979 0.016 0.990 0.005
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TABLE 15

C.MPARISON OF ACTUAL () AND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POINTS or THE t-DISTRIBUTION

INPUT PARAMETERS: o(T
X'
T .00

pacon .90

p(Y,Y) = .80

r(Tray)
P

r(Tx,Ty)
7/,,

r ',Tx,Ty)
7/s P

r -(Tx,Ty)

N 15, d.f. 14

0.005 0.020 -0.015 0.004 0.001
.010 .031 - .021 .009 .001
.025 .049 - .024 .016 .009
.050 .068 - .018 .032 .018
.100 .115 - .015 .058 .042
.900 .910 - .010 .960 . .060

.950 .946 .004 .973 - .023

.975 .968 .007 .982 - .007

.990 .975 .015 .992 - .002
0.995 0.978 0.017 0.997 -0.002

N = 30, d.f. = 29

0.005 0.011 -0.006 0.002 0.003
.010 .015 - .005 .004 .006
.025 .038 - .013 .007 .018
.050 .060 - .010 .015 .035
.100 .103 - .003 ..041 .059
.900 .887 .013 .955 - .055
.950 .931 .019 .979 - .029
.975 .959 .016 .992 - .017
.990 .978 .012 .995 - .005

0.995 0.989 0.006 0.997 -0.002

N - 60, d.i. = 59

0.005 0.007 -0.002 0.000 0.005
.010 .018 - .008 .001 .009
.025 .033 - .008 .004 .021
.050 .051 - .001 .014 .036
.100 .101 - .001 .037 .067
.900 .904 - .004 .953 - .053
.950 .935 .015 .984 - .034
.975 .960 .015 .996 - .021
.990 .982 .008 .999 - .009

0.995 0.990 0.005 0.999 -0.004
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TABLE 16

COMPARISON OF ACTUAL (i) AND THEORETICAL (p) CUMULATIVE

PROPORTIONS AT 10 POINTS OF THE t-DISTRIBUTION

INPUT PARAMETERS: p(T sT I'm .00
X Y

p(X,X.) .80

p(Ya") .80

N = 15, d.f. m 14

0.003 4.016 -0.011 0.003 0.002

.010 .025 - .015 .006 .004

.025 .035 - .010 .013 .012

.050 .058 - .008 .025 .025

.100 .106 - .006 .040 .060

.900 .875 .025 .955 - .055

.950 .932 .018 .982 - .032

.975 .961 .014 .988 - .013

.990 .982 .008 .993 . .003

0.995 0.988 0.007 0.996 -0.001

N = 30, d.f. = 29

0.005 0.012 -0.007 0.003 0.002

.010 .018 - .008 .00S .005

.025 .033 - .008 .011 .014

.050 .062 - .012 .017 .037

.100 .096 .004 .034 .066

.900 .885 .015 .954 - .054

.950 .936 .014 .985 - .035

.975 .959 .016 .995 - .020

.990 .985 .005 .998 - .008

0.995 0.991 0.004 1.000 -0.005

N 001 d.f. = 59

0.06') 0.011 -0.006 0.000 0.005

.010 .014 - .004 .000 .010

.0.") .025 .000 .003 .022

.050 .055 - .005 .013 .037

.100 .113 - .013 .026 .074

.900 .892 .008 .963 - .063

.950 .940 .0J0 .9)1 - .041

.915 .965 .010 .995 - .020

.990 .990 .000 .998 - .008

0.99r) 0.992 0.003 0.999 -0.004
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TABLE 17

COMPARISON OF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE

PROPORTIONS AT 10 POINTS OF THE t-DIS7RIBUTION
INPUT PARAMETER: P(Tx.Ty) .00

p(X,V) .90

p(Y,V) .30

r(rx,Ty)
pp

r(Tx,Ty)
7b.

r (Tx,Ty)

N 15, d.f. a 14

0.005 0.014 -0.009 0.000 0.005

.010 .021 - .011 .003 .007

.025 .035 - .010 .008 .017

.050 .057 - .007 .022 .028

.100 .095 .005 .040 *.060

.900 .907 - .007 .946 - .046

.950 .933 .017 .973 - .023

.975 .957 .018 .986 - .011

.990 .975 .015 .990 .000

0.995 0.983 0.012 0.996 -0.001

N = 30, d.f. = 29

0.005 0.011 -0.006 0.002 0.003

.010 .017 - .007 .004 .006

.025 .028 - .003 .008 .017

.050 .053 - .003 .015 .035

.100 .107 - .007 .031 .069

.900 .895 .005 .964 - .064

.950 .941 .009 .985 - .035

.975 .968 .007 .990 - .015

.990 .984 .006 .998 - .008

0.995 0.989 0.006 0.999 -0.004

N = 60, d.f. = 59

0.005 0.010 -0.005 0.000 0.005

.010 .015 - .005 .000 .010

.031 - .008 .007 .018

.00 .062 - .012 .011 .039

.J00 .098 .002 .034 .066

.900 .901 - .001 .967 - .067

.9y) .953 - .991 - .041

.91) .971 .004 .997 - .022

.900 .989 .001 .999 - .009

0.gri 0.997 -0.002 0.999 -0.004
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.950, .975, .990, and .995 percentile poie4ts are summarized in

Table 18 for r(4,20 and in Table 19 for r715(lx,Ty) for each

combination of the input parameters.

The following results are summarized from the data presented

in Tables 3-19.

The direction of the difference between the theoretical and

actual cumulative proportions of jackknife statistics which were

at or below the 10 percentile points of comparison varied across

the different values of p(Tx,Ty). For example, with p(Tx,Ty) =

1.00 and for each combination of N and pair of reliabilities,

the actual cumulative proportions exceeded the theoretical

proportions at the upper five percentile points for r715(1x,Ty).
NM=

At the lower five percentile points, the reverse was true (see

Tables 3-5). In contrast, with p(T,E,Ty) = .50 and for each

combination of N and pair of reliabilities, the actual cumulative

propertion of jackknife statistics obtained for r7/5(14,Ty)

exceeded the theoretical proportion at the five lower percentile

points (see Tables 12-14).

The jackknife was sensitive to changes in the values of the

reliabilities for each combination of p(III,Ty) and N. In general,

the solutions obtained for p(XIX') = .90, p(Y,Y') = .50 were

superior to the solutions obtained with the two higher pairs of

reliabilities. Comparison of this result with the results

describing the shape of the distribution of r(Tx,Ty) (see Table 1)
WINNE

suggests that the best performance of the jackknife will be

obtained in those situations in which the sampling distribution

of the statistic to be jackknifed is approximately normally

distributed with an appreciable variance.

40
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TABLE 1.8

MEAN OF ABSOLUTE DIFFERENCES BETWEEN THORETICAL AND
ACTUAL PROPORTIONS OF JACKKNIFE STATISTICS AT 10

PERCENTILE POINTS OF THE t-DISTRIBUTION
STATISTIC JACKKNIFED: r(Tx,Ty)

o(Tx,Ty) o(X,Xi) co(Y,11#)

Mean Absolute Difference
N 15 N m 30 N Is 60

1.00 0.90 0.80 0.0235 0.0182 0.0114

1.00 .80 .80 .0257 .0206 .0125

1.00 .90 .50 .0244 .0244 .0207

0.90 .90 .80 .0449 .0440 .0227

.90 .80 ,e0 .0296 .0331 .0230

.90 .90 .50 .0221 .0205 .0135

.80 .90 .80 .0431 .0351 .0247

.80 .80 .80 .0413 .0380 .0264

.80 .90 .50 .0155 .0134 .0150

.50 .90 .80 .0403 .0332 .0171

.50 .80 .e0 .0359 .0248 .0200

.50 .90 .50 .0161 .0171 .0165

.00 .90 .80 .0146 .0103 .0067

.00 .80 .80 .0122 .0093 .0059

0.00 0.90 0.50 0.0111 0.0059 0.0043

11111.

Overall Mean Absolute Difference 0.0269 0.0231 0.0160
Overall Mean Absolute Difference,

P(T
X'

T
Y
)>.00 0.031 0.020 0.0196

Note.--The mean absolute difference equals the mean of
the absolute differences at the .005, .010, .025, .050, .100,
.900, .950, .975, .990, and .995 percentile points of the t-
distribution with the correct degrees of freedom, i.e.,

10

E

= I
Mean Absol uto Di f ference =

10

Th. ovcr;111 m. 111 idv;oluto U rfcrence equals the mean of the
niu 111);io1 Lae rencos across each combination of T

and o_(Y,1") within each value of N.
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TABLE 19

MEAN OF ABSOW . DIFFERENCES BETWEEN THEORETICAL AND
ACTUAL PROPOR1ONS OF JACKKNIFE STATISTICS AT 10

PERCENTI1 POINTS 'F THE t-DISTRIBUTION
STATISTIC J&KKMIFED:

r (T T )
X' Y

po(Tx,Ty) o(X,V) o(YtY1
Mean Absolute Difference

N 15 N m 30 N 60

IMOD

1.00 0.90 0.80 0.0232 0.0170 0.0113
1.00 .80 .80 .0254 .0203 .0126
1.00 .90 .50 . .0216 .0211 .0217
0.90 .90 .80 .0417 .0418 .0208
.90 .80 .80 .0253 .0306 .0218
.90 .90 .50 .0188 .0189 .0126
.80 .90 .80 .0356 .0306 .0216
.80 .80 .80 .0333 .0319 .0219
.80 .90 .50 .0085 .0099 .0094
.50 .90 .80 .0308 .0283 .0095
.50 .80 .80 .0290 .0209 .0120
.50 .90 .50 .0133 .0173 .0087
.00 .90 .80 .0165 .0229 .0259
.00 .80 .80 .0207 .0246 .0284

0.00 0.90 0.50 0.0198 0.0256 0.0281

Overall Meaa Absolute Difference 0.0242. 0.0241 0.0178
Overall Mean Absolute Difference,
p(Tx,T7).00 0.0255 0.0241 0.0153

oMelmaeme...........M.Moomlomiem.DmilemMemMemOM,

Note.--The mean absolute difference equals the mean of
the absolute differences at the .005, .010,..025, .050, .100,
.900, .950, .975, .990, and .995 percentile points of the t-
distribution with the correct degrees of freedom, i.e.,

10

E IP PI
n 1Mean Absolute Difference =

lo

lR ovcrall moan absolu' dIfforence equals Cx mean of the
moNn absolute (Kffuronck. across each combination of a.(T,,T,),

, and ) with in each value of N.
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There was a general tendency for the performance of the

jackknife to improve for each combination of p(TulTu) and pair

of reliabilities as the value of N increased. The overall

performance of the jackknife on r7/5(TrTy) was somewhat superior

to the overall performance of the jackknife on r(4.,Ty) for 0(14!Ty)

greater than zero. With p(x,Ty) > .00, the overall mean of the

means of the absolute differences between the theoretical and

actual cumulative proportions at the 10 percentile points for

r7/5(Tx,Ty) was less than the corresponding overall mean for

r(Tx,Ty). For r7/5(TE,Ty) the overall mean absolute differences

equalled .0255 with N = 15, .0241 with N = 30, and .0153 with

N = 60. The corresponding differences for r(Tx,Ty) equalled

. 0310, .0267, and .0196. For p(,Ty) = .00, the jackknife on

r(Tx,Ty) yielded a considerably superior solution (see Tables 18

and 19).

For some of the combinations of the input parameters, the ,

proportions of jackknife statistics falling in the critical

regions corresponding to a two-tailed hypothesis text were not

equal. For example, for P(14,Ty) = .901 p(XIX') = .901 p(Y,Y') =

. 80, and N = 60, the probability of a Type I error equalled .068

(compared to the nominal value of .050). This indicates that

68 out of the 1000 statistics fell in the region of rejection.

But in this case, 57 out of the 68 values fell in the region

above p(lx,Ty) = .90 and only 11 in the region below p(11c.,Ty) =

. 90. Hence, the Type I errors were not evenly distributed

between the acceptance of p(Ix,Ty) < .90 and the acceptance of
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2.44,Ty) > .90. For other combinations of the input parameters

the pxoportions of jackknife statistics were more evenly divided,

but the actual proportions were sometimes less, and other times

greater than the nominal proportions.

To gain further information on the acceptability of the

jackknife procedure, the results of the jackknife on r(TI,Ty)

and r7/5(Tx,Ty) with N = 30 and N = 60 were compared to the

results using normal curve theory.3 Formula (3) was used to

compute the standard error of r(4,11y). The corresponding mean

absolute differences for both the jackknife and the normal

curve procedure are summarized in Tables 20 and 21. With N =

30, the solution obtained using normal curve theory was, in general,

inferior to the jackknife solutions on r(Tx,Ty) and on r7/5(142Ty).

The overall means of the absolute differences between the theo-

retical and actual cumulative proportions at the 10 points of

comparison across the 15 combinations of p(Tx,Ty), E(XIX'), and

p(Y,Y') were .0231 for the jackknife on r(4,Ty), .0241 for the

jackknife on r7/5(1K,Ty), and .0262 for the normal curve procedure.

WiLh N = 60, there was closer agreement between the three overall

solutions. The overall means of the absolute difference were in

this case .0160 for the jackknife on r(Tx,Ty), .0178 for the

jackknife on r7/5(Tx,Ty), and .0166 for the normal curve procedure.

3 Normal curve procedures were not employed for N = 15. Preliminary
tests on the utility of equation (3) revealed Ehat, with N = 15,
the mean values for the standard error obtained from equaaon (3)
were generally quite different from the observed standard devia-

tion of the sampling distribution of r(T ,T ).X Y
011
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TABLE 20

MEAN OF AUSOLUTE DIFITRENCES BETWEEN THEORETICAL AND ACTUAL
CUMULAIIVE PROPORTIMS OF JACKKNUE STATISTICS AT 10

PERCEAILE POINTS OF THE t.7DISTRI13UTION AND MEAN
OF ABSOLVTE DIFFInENCES BETWEEN TNLOWiTICAL AND ACTUAL

CUMULATIVE PROPORTIONS OF z-STATISTIC AT 10 PERCENTILE
POINTS OF TUE UNIT NORMAL N la 30

VIMIIIMI1.0100010.

mop,.M.OMOmbm.me 4...~..MMO

ri(T
X'

T
Y

) p(Xdr) p(Y,)
Mean AINr:o1ute Difference

Jackknife on
Normal

r g(T
X'

T ) r(T T
Y

) Curve

1.00 0.90 0.80 0.0170 0.0182 0.0279

1.00 .80 .80 .0203 .0206 .0180

1.00 .90 .50 .0211 .0224 .0256

0.90 .90 .80 .0418 .0440 .0476

.90 .80 .80 .0306 .0331 .0370

.90 .90 .50 .0189 .0205 .0165

.80 .90 .80 .0306 .0351 .0362

.80 .80 .80 .0319- .0380 .0408

.80 .90 .50 .0099 .0134 .0175

.50 .90 .80 .0283 .0332 .0351

.80 .80 .80 .0209 .0248 .0288

.50 .90 .50 .0173 .0171 .0217

.00 .90 .80 .0229 .0103 .0157

.00 .80 .80 .0246 .0093 .0129

0.00 0.90 0.50 0.0256 0.0059 0.0121

Overall Mean Absolute Difference 0.0241 0.0231 0.0262

111.00.1 MO.

Note.---The moan absolute difference equals the mean of

the absolute differences at the .005, .010, .025, .050, .100,

.900, .950, .975, .990, and .995 percentile points of the t-

distribution with the correct degrees of freedom, i.e.,

10

E Ip-pi
= 1Lite Dif

)

th overal :II, dif fcrence cquals the mean of the Meall
tite di 11 o rcnces across each combi nat. i on of (r , T )

!!) I n L.'11 o I N.

4s
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TABLE 21

I.ZAN Or ABSOLUTE &IFFERENCES BEEXEN THEORETICAL AND AC 'UAL
CUMULATIVE PROPORTIONS OF JACKKNIFE STATISTICS AT 10 .

PERCE:;c1LE POINTS OF THE t-DISTRIBUTION AND MEAN

OF ABSOLUTE DIFFERENCES BETUEEN THEOnETICAL AND ACTUt.
CUMULATIVE PROPORTIONS OF z-STATISTIC AT 10 PERCENTILE

POINTS OF THE UNIT NORNAL N 60

P(T
X
,T ) p(X,X') p(11,11)

Mean Absolute Difference
Jackknife on

7Ie
Normal

r '(T
X'

T ) r(T ,T
Y
) Curve

X

1.00 0.90 0.80 0.0113 0.0114 0.0J74

1.00
4

1.00

.80

.90

.80

.50

.0126

.0217

.0125

.0207

.0110

.0172

0.90 .90 .80 .0208 .0227 .0256

.90 .80 .80 .0218 .0230 .0244

.90 .90 .50 .0126 .0135 .0108

.80 .90 .80 .0216 .0247 .0254

.80 .80 .80 .0219 .0264 .0255

.80 .90 .50 .0094 .0150 .0193

.50 .90 .80 .0095 .0171 .0132

.50 .80 .80 .0120 .0200 .0194

.50 .90 .50 .0087 .0165 .0209

.00 .90 .80 .0259 .0067 .0086

.00 .80 .80 .0284 .0059 .0079

0.00 0.90 0.50 0.0281 0.0043 0.0069

Overall Mean Absolute Difference 0.0178 0.0160 0.0166
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Conclusions

1. The complexity of the sampling distribution of the

estimate of the disattenuated correlation coefficient

indicates that it is unlikely that a mathematical

model can be formulated to describe the sampling dis-

tribution of r(Z2s!Ty).

2. The performance of the jackknife on the disattenuated

correlation coefficient was sensitive to changes in the

values of the input parameters. The performance was

better for those combinations of the input parameters

which yielded a sampling distribution of the statistic

to be jackknifed that was more normally distributed

and which had an appreciable variance.

3 The performance of the jackknife on r7/5(Tx,Ty) was
IRWIN

slightly superior to the performance of the jackknife

on r(111.1) greater than zero. However, the discrepancies

between the two performances became negligible as N

increased.

4. The jackknife can be used to set approximate confidence

intervals about p(Tx,Ty), thereby communicating a general
mem

idea of the precision of the estimate obtained. Howevel,

the jackknife si.Juld not be used to perform directional

hypotheses tests.

5. The jackkrife fared well in comparison with the normal

curve procedure. In the case of small N (N = 30), the

jackknife was superior to the normal curve procedure.

SI
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The jackknife was originally proposed as a generally

applicable procedure to construct approximate confidence

intervals. The results obtained in this research support this

claim for the disattenuated correlation coefficient, particularly

for moderate size N(N 1 30). The jackknife is conceptually

simple. Alternate procedures require the derivation of complex

formulas for determining an adequate estimate of the standard

error (vis., equation (3)). Current trends are for computer

calculations to become less expensive and programming more

expensive. If this trend continues, the advantages of first

checking the jackknife to provide an estimate of the precision

of a particular statistic, rather thin struggling with the

derivation of approximations of standard errors and hoping for

normality, should become even more appealing as a method for

communicating the precision of a given statistic. For situations

in .flich the sample size is quite large, division of the sample

into sub-samples larger than one, should reduce the computational

time while at the same time retaining an acceptable degree of

accuracy.
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